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A STRUCTURE THEOREM FOR
HOLOMORPHIC CURVES IN Gr(3, C%

QING LIN

Abstract

A holomorphic curve f in Gr(n, Cz") is called generic if the curvature
of the canonical connection of f*(S(n, Cz")) has distinct eigenvalues,
where S(n, C*") is the universal subbundle over Gr(n, C*"). A holo-
morphic curve in Gr(#, Cz") is completely split if it is the orthogonal
direct sum of n holomorphic curves in the projective plane. These two
types of curves are both relatively simple. In this paper, we prove that a
1-nondegenerated holomorphic curve in Gr(3, CG) is either generic or
completely split.

Introduction

Denote the Grassmannian of n-dimensional subspaces of " by
Gr(n, C*"). A holomorphic curve in Gr(n, C*") is locally a holomor-
phic mapping of some open disk in C into Gr(n, Cz"). Because of the
analytic structure, we can restrict ourselves to the local holomorphic curves
only.

Let /:Q — Gr(n, C*") be a holomorphic curve. For each z in Q, we

define (f(Z)’ fJ(Z)) = Span{yl(z)’ T yn(z)s yll(z)’ T Y:!(Z)} » where
yj:Q - C™" s holomorphic and span{y,(z), --- , 7,(2)} = f(z). Clearly,
(f, f) is independent of the choice of Vi s Y, Wesay f s 1-

nondegenerated if (f(z), f'(z)) = C*" for each z € Q.

Throughout this paper, by “holomorphic curve” we mean “l-nonde-
generated holomorphic curve”. Let f be a 1-nondegenerated holomorphic
curve in Gr(n, C2") . Then the holomorphic Hermitian vector bundle

the space f(z)

E./"

z
is a completely unitary invariant of f by the Calabi rigidity theorem. By
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the unitary equivalence of f; and f, we mean that there is a unitary trans-
formation U of C** making U - fi = f,. We shall name the canonical
connection of E - and its curvature the connection of f and the curvature
of f, respectively.

Definition 1. A holomorphic curve is called generic if its curvature has
distinct eigenvalues at some point.

In [3] and [1], it was proved that a second order contact of two generic
curves implies unitary equivalence. In this paper we shall prove that any
holomorphic curve in Gr(3, C6) is either generic or an orthogonal di-
rect sum of three holomorphic curves in the projective plane. Thus in
Gr(3, C6) , two holomorphic curves having second order contact must be
unitarily equivalent, which answers the so-called Griffiths’ conjecture in
the simplest nontrivial case.

During the course of this work, the author benefitted from the discus-
sions with Professor M. J. Cowen, and has also been inspired by an un-
published idea of Professor P. A. Griffiths. The author would like to thank
both of them.

Main results

Let f be a holomorphic curve in Gr(n, CZ") . Using the canonical co-
ordinate of the Grassmannian, we see locally £  has the columns of (‘ID)
as a holomorphic frame, where I isthe n xn identity matrix and P is an
n X n matrix of analytic function entries. Over this holomorphic frame,
the matrix of the curvature bundle map K f (K,dzdz is the curvature

tensor) is
1

—1 5

—(I+P'P) P*"(I+PP") P

A quick consequence of this expression is that the eigenvalues of K , are
all strictly negative.
From the above expression, it follows that

2 2

d P
S5 logdet(—K ) = ~25—logdet(I + P"P).

By a well-known lemma of S. S. Chern, trXK = K A'(E,) - Noting that

2 2

7]
K/\"(Ef) ~ 5392 logdet(I + P*P) = 75 a_logdet( K,),

we thus have shown
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Lemma 1. Let A, ---, A, be the smooth eigenfunctions of K ; and
define
2 8%
f(/ll) = 2/11 - /llm% log(—).l-).
Then .,
ST F(,)/4;=0.
i=1

Definition 2. We say a holomorphic curve f is completely split if E y
is an orthogonal direct sum of » holomorphic line bundles. Equivalently,
f is an orthogonal direct sum of n holomorphic curves in the projective
plane.

Our first aim is to show:

“ f is completely split & F(4,) = 0 for all /™.
In order to do this, we need to look back at the differential structure on
E Iz
Recall that a bundle map of E to E isa C™ map which maps each
fiber linearly to itself. Let ¢ be a bundle map of E ;o E,, where fis
a holomorphic curve in Gr(n, CZ") . Then we define

[D,9]=Dog—(p®id)oD =9 dz+¢-dz.

Although D is not a bundle map, a quick check gives that ¢_ and ¢ are
all bundle maps of E ;to E - We call them the first covariant derivatives
of ¢. So ¢ - would be one of the first covariant derivatives of ¢-.

If ovér an orthonormal frame S the connection matrix is ©4d z —‘e*df,
then

0.(5)=10, 95+ 222
0=(8) = [-0", p(s)1+ 222)

For details, we refer the reader to [2]. Also in [2] it was proved that
K., =K, (write K s as K), although K .- # K . in general.
In [1], the following was proved:
“an n-dimensional Hermitian holomorphic vector bundle

(%) is equivalent to some E y with f a holomorphic curve in
Gr(n,C") & 2K + KK 'K, =K_..”
Definition 3. An orthonormal frame is called a first adapted frame if,
over it, the matrix of K, is smoothly diagonalized.
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From now on K will stand for the matrix of the curvature.

Now we are ready to show

Theorem 1. A4 holomorphic curve fin Gr(n, CZ") is completely split
< F(4,) =0 for all i, where 1, , 4, are the smooth eigenfunctions of
K,.

fProof The forward direction is trivial. For the backward direction, we

need the following fact from [2] to reduce the problem: a holomorphic
curve is completely split iff over some first adapted frame [©, K] = 0
where (©dz—-©"dZ is the connection matrix. Then, take any first adapted

frame and write K_, K-, K_ in matrix form:

oK oK
=[O, K]+8_’ ]@ K]+8—’
. o' aK 82
K_=[- — —[©, K K.

Substituting them into (x) and takmg the trace on both sides, we have

ZF )+, KI'K [0, K] =0

e., tr[@, K]'K'[©, K]=0. Since K~ is negative definite, we obtain
[©,K]=
Now, we can direct our attention to our final aim. We assume there is a
nongeneric curve [, which is not completely split, and fix it once and for
all. We shall then use the following three steps to obtain a contradiction.
Let us assume that over some first adapted frame the curvature matrix

is
A
K = u
u

with 4 # u. By Theorem | and Lemma 1 above, we may assume F (1) # 0

and F(u)#0. Let
4 a4, 4y
e = (‘121 a5 aza) )
a3 43 433
and assume

0 a]z(:u_’l) 013(/,(——/1)
[©,K]=| ay(4d—pu) 0 0 # 0.
a, (A—p) 0 0

Without loss of generality, we take |q, 2|2 + la1312 #0.
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Step 1. There is a first adapted frame such that a,, >0, a;, >0 and

a, =a;=0.
Observe that if S is a first adapted frame and

A
K(S) = H ;
I
), where U isa 2x 2 C* unitary matrix, S(} ) is

then for any (05
again a first adapted frame. But © changes to
1 0 o 1 0 0 0
0 U* 0 U 0 U*aU/dz)”
so we may choose U smoothly, such that @, >0, ;=0 and a, >0
0 a,,(u—4) 0
0 0].

0 0

azl('l_:u)

Now
O, K]= (
s, (A — u)

Equation (*) can be rewritten as
) +10, K1'K7'[©, K]

F(A)
F(u)
F(u)
dlogi
oz
+[®,K1*( Slen )
(%) i
o logi
0z
+ ( 2logu ) [©, K]
dlog u
9z
* « 0K a
~1-e".10.Kl1+ [ -0, 58] + Lo, k1,
where
C=t)(jay,)* +ay ) 0 0
0 a?zu—xﬂ)_ 0]
0 0

[©,KI'K~'[®, K] =
0

a8, (1 — A)}

a,(pn — )@y —ay)
@y, @y (A — p)

(-e".1e, Kl =
(afz +lay, |2 + agl)(ﬂ —A)

) @yy — Ay Yt — ) + Ty (= 2)  (layy ' + a3 — p)

ay(A33 =@ ) (1 — A) + ay Tp3(u = 4) 38y, (A= 4) a3, (A — u)
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Considering the (2, 3) entry of (xx), we have

F(u) 2
i—u a3
Therefore a;, >0 and a,, =0.
Step 2. 1/u =constant,

Fix the first adapted frame from Step 1 and consider the (1, 3) and
(2, 1) entries of (xx). Then we get

_ a3 9log((4— u)/u) 5 %12 9log(d/(4~ )
a, oz ’ 37 gy, oz ’

32

which are combined to give

a3, 9 log((u = A)/w) _ 8 log(A/(u—4)
aﬁ o0z 0z

(1)

Now from the (2, 2) entry of (xx) it follows that

2 _ Fu) 4
An=7_4 Ln’

so that a31 / a12 4/ A . Substituting it into (1), we get

Olog(4/(u—4)) _ puolog((u—A)/n)
8z A 0z ’

ie., 84/0z =0, or i/u = constant.
Let A/u=c;then c# 1, ¢ >0. Thus F(A)/A+2F(u)/u = 0 becomes

2
) c+2 #:a log_,u'
3 0z0Z

- 2 __2 2 _ 2
Moreover, a;, =0, a3, = —3u, a, = —5Cu.

Step 3. a,; =0 and a,, # 0 (a contradiction).
Considering the (3, 1) and (1, 2) entries of (xx), we get

1o 13
43374, =35, logu,  a,—a,= 352 log 1,

addition of which gives a,; —a,, = (8/9z)logu. Recall that K and ©
have to satisfy the connection-curvature equation:

(A) [®®]+6@ 88
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where
. ay 4 O a4, 0 ay
[©,6]= 0 ay ay|.|a, @ O
I ay 0 ay 0 a, ay,
2
ap, - a31 a12(a22 211) ay(ay; — as3)
= | aplay —ay) |a23l —4a; a23ga33 _2‘122)
ay,(@, a33) ay(a3; —ay,) a5 —lay|
Considering the (2, 2) and (3, 3) entries of (A), we have
da, da,
—/1=|a23| a12+2Re 8_ , —/1=a31 |a23|+2Re 8“ ,
subtraction of which yields
0 —a
2|a23|2 = afz + a§1 +2Re —(%39——&)
_ 2c 2 8? logu 2
_<_?‘§>”+2 7oz 3T

Thus a,, # 0, since ¢ > 0.
Next, consider the (2, 3) entry of (A):

0 =a,,(a,, - a,,) +0a,,/9Z.
Since a,; # 0, if we write a,; = |a23|ei0 , then
O(logu +i6) _8log|a23| _ _lM
0z 9z 2 07
r (8/07%)[log(—u)*"* + i6] = 0, which implies

8* c+2\
5oz los-m = 2( 52 Ju =0,
a contradiction.

Because of this contradiction, we have reached
Theorem 2. A holomorphic curve in Gr(3, C6) is either generic or com-
pletely split.
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